New Selection Process for Retaining Walls Based on Life Cycle Assessment and Economic Concerns

Author:

Zbidi Hend1,Khay Saloua El Euch1

Affiliation:

1. University of Tunis El Manar

Abstract

Earth-retaining walls (ERWs) are widely used structures in civil engineering, a field known for their substantial environmental impact. However, the current practice of selecting ERW types for a project often neglects environmental concerns. To address this issue, this study proposes a novel process to enhance the rationality of ERW selection. It involves assessing the performance of commonly used ERW types in terms of both environmental issues and economic considerations. The proposed process relies on calculating a total cost (TC), which incorporates the costs of two crucial environmental indicators: carbon dioxide (CO2) emissions and cumulative energy demand (CED), evaluated using life cycle assessment (LCA), in addition to considering the traditional construction cost of the ERW. By determining the TC for various retaining wall options, engineers can identify the optimal ERW type for a specific project. To validate the effectiveness of this environmental-economic approach, a case study was conducted comparing two ERW types: the conventional concrete-reinforced retaining wall (CRRW) and the geosynthetic-reinforced retaining wall (GRRW). The study evaluated structures constructed at four different heights, ranging from 3 m to 6 m. The results demonstrate that the GRRW is the optimal option, offering a lower TC than the equivalent wall conventionally built with reinforced concrete across all evaluated heights. However, the difference in TC between the two ERWs is more pronounced for taller walls. At a height of 3 m, the total cost ratio between the CRRW and the GRRW is moderate at 1.2, while it substantially increases to 2.5 at a height of 6 m. In conclusion, the proposed process was effectively applied to the case study, providing valuable insights into the assessment of earth-retaining structures from both environmental and economic perspectives. It can assist engineers in prioritizing and selecting the most sustainable and cost-effective ERW type for a specific project.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3