Enhancement of <i>Jatropha curcas</i> Based Oil-Derived Biolubricant Properties by Esterification of 2,3-Butanediol

Author:

Tajuddin Nazrizawati Ahmad1,Alwi Nurul J.1

Affiliation:

1. Universiti Teknologi MARA

Abstract

Vegetable oils and animal fats and have been extensively used for biolubricant purposes for countless years. Through the discovery of petroleum and the availability of inexpensive oils, the vegetable oils or their derivatives are decent alternatives to replace the existence of petroleum oils as lubricants or lubricant additives in numerous industrial applications. In addition, vegetable oils have a very high viscosity index and it does not distress by the high temperature. Apart from that, the high flash point and low volatility are also known as the vegetable oil’s forte, making it always be prominent compared to the other oils. However, vegetable oils also have been reported to have a low thermal and oxidative stability, which attain less auspicious to be used as a lubricant. In this study, the Jatropha Curcas oil had been used as a raw material in the production of the biolubricant process with the enhancement of the lubricant properties by the aid of 2,3-butanediol. Initially, the Jatropha Curcas was hydrolyzed to obtain the fatty acid before being further esterified with 2,3 butanediol (acted as capping material) to form ester 2,3-butanediol. The hydrolyzed and esterified products have been analyzed by using the Gas Chromatography-Mass Spectra (GC-MS) and the Fourier Transforms Infra-Red (FTIR). The GCMS results showed the composition of fatty acids and ester formed remain 95-99% in the product. The absorption wavelength was detected around 1715.93 cm-1, further confirming the formation of ester 2,3-butanediol. Overall, the pour point of the product was obtained as low as 5 °C with a flash point at 210 °C and the viscosity of ester 2,3-butanediol was 60.9 cp. (0.78 in).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3