Effect of Atmospheric Pressure Plasma in Inert Gases on Orthopedic Ultra-High Molecular Weight Polyethylene

Author:

Vasilets Victor N.1,Velyaev Yuriy2,Mosunov Andrew2,Evstigneev Maxim2

Affiliation:

1. Russian Academy of Sciences

2. Sevastopol State University

Abstract

In this work, studies have been conducted on the treatment of ultrahigh molecular weight polyethylene (UHMWPE), which is one of the structural materials used in the endoprostheses, with atmospheric pressure plasma in high-purity argon and helium. For this purpose, an installation consisting of a high-voltage pulsed generator, voltage and current measuring devices and a reaction quartz chamber with electrodes, in which UHMWPE samples were placed, was developed and constructed. It is shown that processing under certain conditions in Ar plasma and He at atmospheric pressure leads to the appearance of terminal double bonds in the structure of the processed polyethylene, as evidenced by the appearance of a peak of 880 cm-1, in the attenuated total reflection IR spectrum. This peak is observed both for samples treated in helium and argon plasma. The formation of such bonds is a consequence of the generation of active radicals in the UHMWPE surface layer under plasma treatment, which, during recombination, also form intermolecular crosslinking, thereby increasing the strength characteristics of the material as a whole. The modification of the surface of the treated samples begins within the first minute of processing and reaches its peak values 10-20 minutes after treatment in plasma.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3