The Influence of Machining Variables on the Quality of the Shaping Process on Hard Steel

Author:

Aminy Ahmad Yusran1,Hayat Azwar1ORCID,Mudassir Mudassir1

Affiliation:

1. Universitas Hasanuddin

Abstract

The product quality of hard steel material formed by a shaping machine using HSS tools was studied under the influence of machining variables. The research focused on the effects of tool vibration on the surface roughness of the product. The experimental process was carried out by selecting the machining independent variables, namely: cutting speed (V) = 1 m/min; 2 m/min; 3 m/min; cutting thickness (a) = 1 mm, 1.5 mm, 2 mm; feeding motion (f) = 5 mm/step; 8mm/step; 10 mm/step. Shaping machine was operated with 3 fixed speed levels (n) of 21.8 rpm, 39 rpm and 59.8 rpm, respectively. The dependent variable, namely stroke per minute (np); and feed rate (Vf). The material used was ASTM A483-A high carbon steel. Vibration measurements were taken during machining using an ADXL 345 accelerometer and an Arduino Pro Mini with support for Arduino IDE 1.8.13 and USB TTL CP 2120 software. Vibration acceleration (af) on the tool was recorded and an evaluation was performed to determine the effects of machining variables on the final products. The results show that speed lavel of machine, feed rate , and cutting thickness majorly affect vibration. The lowest vibration was obtained at a speed (n) of 21.8 rpm, a feed rate (Vf) of 1 mm/s, and cutting thickness (a) of 0.2 mm. The highest vibration was obtained at n of 59.6 rpm, Vf = 1 mm/s and a of 0.4 mm. The quality of the product related to the surface roughness was mainly influenced by the machine speed levels. The roughness values ranged from 3.97 to 6.46 µm, with the lowest surface roughness or smoother surface achieved at a moderate speed of 39 rpm and higher surface roughness at high (59.8 rpm) and low (21.8 rpm) speeds.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference10 articles.

1. R.H. Todd, D.K. Allen, and L. Alting, Manufacturing processes reference guide, Industrial Press Inc. 1994.

2. R.G. Taylor, The metal working machine tool operator. The analysis of practical skills. Springer, Dordrecht, (1978), 85-111.

3. G.T. Smith, Turning and Chip-breaking Technology. Cutting Tool Technology: Industrial Handbook. (2008), pp.33-86.

4. A.G. Piersol, and T.L. Paez. Harris' shock and vibration handbook. McGraw-Hill Education, 2010.

5. B.L. Juneja, Fundamentals of metal cutting and machine tools. New Age International; 2003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3