Affiliation:
1. North China University of Science and Technology
Abstract
Photothermal-temperature responsive [Ag nanoparticles-hollow mesoporous silica nanospheres–poly (N-isopropyl acrylamide-acrylic acid)] (Ag@HMSN@PNIPAM-AA) nanoparticles were designed and prepared, and the combination of Ag nanoparticles (AgNPs) and [poly (N-isopropyl acrylamide-acrylic acid)] (PNIPAM-AA) was used as a switch of the photothermal-temperature effect to control drug release. The results of cell culture in vitro showed that [mesoporous silica nanospheres–poly (N-isopropyl acrylamide-acrylic acid)] (MSN@PNIPAM-AA) and Ag@HMSN@PNIPAM-AA nanoparticles had good biocompatibility and less cytotoxicity, and Ag@HMSN@PNIPAM-AA nanoparticles had higher cell inhibition under 808 nm near-infrared light. The combination of near-infrared light and doxorubicin showed higher drug release efficiency and a stronger inhibitory effect on HepG2 cell growth. These characteristics indicate that Ag@HMSN@PNIPAM-AA nanoparticles have great potential for treatment. This study also proved the universal applicability of Ag@HMSN@PNIPAM-AA nanoparticles. Different model drugs and nanoparticles can play different roles and have development potential.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献