Comparative Study of ZnO Nanomaterials Synthesized by Green and Electrospinning Methods

Author:

Barman Subhodeep1,Kumar Jagadish2,Das Arnab Kumar3,Sikdar Suranjan4,Biswas Abhijit5,Srinivasan Ananthakrishnan6,Das Rahul7

Affiliation:

1. Gangarampur College

2. Utkal University

3. Behala College

4. Government General Degree College

5. IISER Pune

6. Indian Institute of Technology Guwahati

7. University of Burdwan

Abstract

This article presents a comparative study between the ZnO nanocone and nanofibers. ZnO nanocones were synthesized through the green route, using Azadirachta indica leaf extract media, and ZnO nanofibers were synthesized by the electrospinning process. The microstructural parameters of the prepared nanomaterials were investigated using powder X-ray diffractometer (XRD) and Rietveld refinement analysis. The XRD patterns confirmed the formation of single-phase ZnO with hexagonal wurtzite structure having an average crystallite size of 21 nm and 54 nm for the conical and fibrous nanoparticles, respectively. The field emission scanning electron microscopy revealed that the mean radius of nanofibers was 25-30 nm while the mean height and mean base radius of nanocones were 181 nm and 91 nm respectively. Elastic properties were estimated using elastic compliances S11 (6.0678×10-12 m2N-1), S12 (-2.2602×10-12 m2N-1), S13 (-1.3579×10-12 m2N-1), S33 (5.5196×10-12 m2N-1) and S44 (22.6833×10-12 m2N-1) which were calculated using the THERMO-PW code, based on the density functional theory. The calculated elastic constants of the two nanostructures yielded similar values as expected. However, the elastic limit of the two nanostructures differs due to their morphological anomaly. Moreover, the optical bandgap of nanofibrous ZnO was lower than that of nanoconical ZnO.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3