Affiliation:
1. Nanjing University of Science and Technology
Abstract
In order to reveal the carbonation mechanism of alkali-activated concrete, the accelerated carbonation tests based on alkali-activated slag pastes were carried out. The evolution of microstructure and chemical composition for alkali-activated slag pastes subjected to carbonation was analyzed combining thermogravimetric analysis (TGA), mercury intrusion porosimetry (MIP) and a recently developed extended X-ray attenuation method (XRAM). The results showed that, the microstructure of alkali-activated slag pastes deteriorated gradually. Based on MIP and XRAM, the porosity of S4 (sample with a water-binder ratio of 0.4) increased by 8.24% and 11% after carbonation, and that of S6 (sample with a water-binder ratio of 0.6) increased by 7.45% and 10%, respectively. Besides, thermal analysis showed that, after carbonation, 11.45 mol / L and 19.57 mol /L CaCO3 were produced separately by S4 and S6. The main carbonation product for S6 was calcite, but for S4 vaterite and disorderly stacked calcite were also presented.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献