Affiliation:
1. Soochow University
2. Weiqiao Lightweight Research Center at Soochow
Abstract
Nanoscale dispersoids will retard or inhibit recrystallization of aluminum alloys during thermomechanical processes. In the present study, the influence of an addition of 0.6 wt. % Cu on the precipitation behavior of dispersoids in an Al-Mg-Si-Mn-Cr alloy had been investigated. Large amounts of dispersoids with different shapes, e.g. cubic, rod-like and plate-like, were achieved in the experimental alloys after homogenization. Compared with the Cu-free alloy, Cu-added alloy exhibits a higher proportion of cubic shape dispersoid. HRTEM results indicated that the cubic shape dispersoid has an icosahedral quasicrystal structure, while the rod-like or plate-like shape dispersoids show a simple cubic crystal structure. Due to the presence of a high number density of quasicrystalline dispersoids, the Cu-added alloy exhibits a higher recrystallization resistance during hot compression. This study presents a new insight that besides the precipitation strengthening, the Cu alloying in an Al-Mg-Si-Mn-Cr alloy can also contributes to the precipitation of dispersoids.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics