Numerical Analysis Nucleation and Growth Conditions of Single-Crystallinity Control during Laser Surface Modification of Ni-Based Single-Crystal Superalloy Part I: Thermal and Chemical Determinants

Author:

Gao Zhi Guo1

Affiliation:

1. Anyang Institute of Technology

Abstract

Nucleation and growth conditions of single-crystallinity control are convincingly elaborated by multi-scale mathematical modeling of heat and mass transport to totally abate undesirable weld defects, e.g. disoriented crystal and hot cracking inside molten pool of nonequilibrium crystallization, in order to illustrate the usefulness of predictive capability through theory and experiment procedures. Crystal growth is complicated by crystallinity-dependent thermal and chemical driving forces in front of dendrite tip during viable laser surface modification of Ni-based single-crystal superalloy. These two thermal metallurgical determinants play crucial role in crack-insusceptible columnar crystal growth, which is favorably oriented throughout weld depth. There is particular challenge in complete elimination of disoriented crystal, i.e. stray grain formation, for acceptable surface quality. Conservative (001)/[100] crystalline orientation is desired to diminish Al concentration and supersaturation, and morphologically satisfy epitaxial growth kinetics to successfully lessen central cracking with satisfactory variability of laser power and welding speed. Comparatively, (001)/[110] crystalline orientation is disadvantageous to asymmetrically augment Al concentration and supersaturation and aggressively increase interface instability, microstructure heterogeneity and hot cracking vulnerability along disoriented crystal boundaries. Disoriented crystal is increasingly withstood if the Al concentration and supersaturation in front of dendrite tip are low enough and crack-unsusceptible part is relatively large enough in case of attractive (001)/[100] crystalline orientation with optimal range of heat input to ameliorate microstructure homogeneity. Crystalline orientation region varies with diverse welding configurations, and epitaxy across solid/liquid interface is also sensitive to heat input of laser processing, which necessitate high efficient welding conditions optimization. Considerable effort is made to distinguish diffusion-driven crystal growth between a series of combinations of multiple welding conditions, such as critical welding configuration and heat input. Metallographically, the morphologies of crystal growth and hot cracking are experimentally observed to consistently support kinetics calculation result and well explain correlation between solidification behavior and crystal growth.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3