Chaining of Compaction with Flow Simulations to Predict the Filling Behavior in Resin Transfer Molding Processes

Author:

Bublitz Dennis1,Thalhamer Andreas1,Schwöller Johannes1,Faron David1,Colin David1,Drechsler Klaus1

Affiliation:

1. Technical University of Munich

Abstract

Closed mold injection processes such as resin transfer molding have an increasing importance for manufacturing high quality carbon fiber reinforced parts at high production rates. One major challenge during this process is to avoid resin rich corners, which are a result of a non-uniform compaction of the preform in the tool. The objective of this work is to predict compaction defects in the preform and their effects on the filling behavior. We use numerical compaction simulations to calculate the preform geometry after tool closing, which is subsequently transferred into the infiltration simulation to model the filling behavior. Additionally, the fiber volume content and the material orientations are transferred from the mechanical simulation. Areas in the tool, which are not filled by the reinforcement, are modelled as flow channels with high permeability. The achieved results prove the significant influence of the compaction state on the filling behavior. The novel method supports the design of RTM tools and helps to optimize the manufacturing process.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3