Architecture Fibrous Meso-Porous Silica Spheres as Enhanced Adsorbent for Effective Capturing for CO<sub>2</sub> Gas

Author:

Alsadi Jamal1,Tripathi Vikas2,Amaral Larissa Souza3,Potrich Erich4,Hasham Sarah Haidar5,Patil Pandurang Y.6,Omoniyi Elabiyi Michael7

Affiliation:

1. Jadara University

2. Graphic Era Deemed to be University

3. University of Sao Paulo

4. Amapa State University

5. Christ University

6. University of Mumbai

7. Federal University of Technology

Abstract

The increase in exhaust of CO2 gas has created a undesirable change into atmosphere, which leads to global warming and unfavourable climatic change. Therefore capturing for CO2 gas has become a global anxiety. Coal-mine stations generate the majority of the world's electricity, Stakeholders environmentalists, and Researchers have paid close attention to CO2 capturing using combustion technology using a variety of technological alternatives such as membrane separation, adsorption, absorption, and chemical loop combustion in presence and absence of oxygen. Meso, Micro and porous adsorbents can be used to collect carbon from exhaust gases. Carbonaceous MOF and non-carbonaceous and mesoporous adsorbent for CO2 capturing under various pore size and surface area are discussed in this study. The mesoporous adsorbents and non-carbonaceous micro are also being studied in chemical loop combustion with in situ CO2 capture at elevated heat (>400 °C). The mechanics of adsorption, material properties, and synthesis techniques are all explored. Isosteric temperatures and characterization approaches are discussed. The prospects for improving the techno-economic feasibility of carbon capturing systems by combining them with CO2 to create industrial essential compounds such as ammonia and urea are investigated.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3