Implementation of a Test Plan Ontology for Incremental Sheet Metal Forming Made with Models for Manufacturing (MfM) Methodology

Author:

Morales-Palma Domingo1ORCID,Mas Fernando2,Arista Rebeca3ORCID,Oliva Manuel4,Vallellano Carpoforo1ORCID

Affiliation:

1. University of Sevilla

2. M&M Group

3. Airbus

4. Airbus Defense and Space

Abstract

Models for Manufacturing (MfM) is a methodology currently under development with a novel approach to applying Ontology-Based Engineering concepts to manufacturing. MfM is based in a 3-Layer Model (3LM) framework: a Data layer that collects all the information, e.g. in databases, an Ontology layer for ontological definition containing the domain knowledge, and a Service layer comprising all necessary software services. The Ontology layer is the core of the 3LM framework and is made up of 4 models: Scope, Data, Behaviour, and Semantic models. The 3LM framework is supported by user-friendly modelling tools and guarantees independence between the 3 layers. This work aims to evaluate the MfM methodology through the development of a real use case based on previous work by the authors: an experimental test plan to study sheet metal formability in hole-flanging operations by Single-Point Incremental Forming (SPIF). The test plan includes the definition of the main geometrical parameters of the specimens, the generation of the forming tool paths and G-code for a CNC machine, the evaluation of the manufactured parts and the analysis of the material formability. The paper presents the definition of the Ontology layer for the developed use case using various graphical modelling tools and a simple implementation of Data and Service layers as well as the interfaces between the 3 layers. The conclusions of the work highlight the strengths and weaknesses of the application developed and point out the main lines of future development of the MfM methodology.

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3