Affiliation:
1. Universitas Gadjah Mada
Abstract
Biomaterial products for bone repair are needed to support accelerated tissue healing. This research aimed to synthesize and characterize carbonate hydroxyapatite (CHA) from Pinctada maxima (P. maxima) using the precipitation method with a short aging time, 15 min. CHA was dried with oven-dry at 100°C for 12 h (CHA A) and a furnace-dry at 1000°C for 2 h (CHA B). Short aging time succeeded in producing CHA B-type with lattice parameters and of CHA A is 9.382 and 6.964 , while 9.451 and 6.962 for CHA B. The high temperature treatment made the diffraction peak indicating CHA more detected and crystallinity increased to 97.87%. The appearance of C–O bond and diffraction peaks of CHA verified substituted carbonates hydroxyapatite.
Publisher
Trans Tech Publications, Ltd.