Vibration Control of Functionally Graded Panels using Parallel Resonators

Author:

Sahu Atanu1,Kumar Shashi1,Bhavyashree N.1,Roy Anuja2

Affiliation:

1. National Institute of Technology

2. Jadavpur University

Abstract

Functionally graded materials (FGM) are often an integral part these days in many engineering applications, such as, nuclear structural components, spacecraft and marine structures, thermal barrier coatings used for military applications, etc. These structures are also susceptible to dynamic loads varying from harmonic to impulse type of loadings which are in the form of rotating engines, sudden blasts and others. These loadings often pose serious threats to the structural systems by inflicting fatigue damages or by driving the system in tune with its resonating frequency that eventually lead to the complete collapse of the structure. Therefore, a vibration control strategy needs to be devised to protect these structures from unwanted vibrations due to the external loading. A passive vibration control strategy is proposed in the present research work to control the vibration response of a flat panel made of functionally graded material. At first, the FG plate is numerically modelled using the finite element (FE) method to calculate its response due to a point harmonic force. Ceramic (Alumina) is used for the top part of the FG plate while the bottom is made of metal (Aluminium) and the material property is smoothly varied from ceramic to metal using the power law distribution. Then, several resonators consisting of spring-mass system and parallel to each other are attached to both sides of the panel to isolate the response in the resonating frequency ranges. The FE model for the FG plate with resonator is developed and the controlled vibration response is obtained. The controlled response indicates that the resonators are efficient to produce band-gaps in the resonating frequency regime compared to the bare FG plate.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3