Effects of Irradiation Dose of Sheet-Like Electron Beam and its Cathode Voltage on Impact Strength of Carbon Fiber Reinforced Thermoplastic Polyamide just before Shipping

Author:

Sagawa Kouhei1,Kimura Hideki1,Ishiwata Tomoo1,Faudree Michauel C.1,Uchida Helmut Takahiro1,Nishi Yoshitake1

Affiliation:

1. Tokai University

Abstract

Achieving a strong bond between carbon fiber (CF) and recyclable thermoplastic polymer (TP) has always been highly sought after. So far, applying electron beam (EB) irradiation with optimal dose and cathode potential (Vc) has shown success in increasing mechanical properties of interlayered CFRTPs. However, with concern for durability and safety, higher strength is desired. Therefore, EB setting applying electron beam (EB) irradiation with cathode potential (Vc) to 170, 210, 225 or 250 kV was applied to CFRTPA (carbon fiber reinforced thermoplastic polyamide) articles just before shipping. Specimens were 9 CF plies alternating between 10 PA (polyamide) sheets, designated [TPA]10[CF]9. When optimal EB dose of 43.2 kGy is applied to both finished specimen surfaces after fabrication, experimental results show higher Vc setting of 250 kV can increase impact strength of the [TPA]10[CF]9 over that at 170 kV. In summary, the 250 kV-EB (250 kV) strengthens [TPA]10[CF]9 significantly, about 25 to 27% larger than that of 170 kV and zero (untreated). Based on Christenhusz and Reimer equation to calculate penetration depth, Dth of EBI into polymers, increasing Vc to 250 kV increased Dth to more than 2 times that at 170 kV.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3