A Model to Construct and Predict Flow Curve of Materials from Compression Test Results with Machine Learning Models Using Python

Author:

Aydın Tolga1,Kocatürk Fatih1,Zeren Doğuş1

Affiliation:

1. Norm Cıvata San. ve Tic. A.Ş

Abstract

In order to obtain flow curves from compression test results of a cold forging material and predict flow curves of the material at intermediate temperature and strain rate values, a model was developed using Python programming language in this study. The model consists of two parts: Flow curve determination and flow curve prediction. The compression test data including Force-Stroke values was processed to determine the flow curves in the first part, and the flow curve data constructed for certain temperature and strain rate values of the material was used as input for the machine learning algorithms to predict flow curve at desired intermediate temperature and strain rate values in the second part. Moreover, Ludwik material model parameters were estimated by using curve fitting methods in order to define the material model into the simulation software. Machine learning algorithms and various regression models in Python libraries were tested to predict the flow curves. The performances of different machine learning and regression models were compared with respect to the mean squared error and coefficient of determination performance measures. Support vector regression, k-Nearest Neighbour (kNN) and artificial neural network models were used to predict flow curves of cold forging materials and kNN regression model was able to found predictions with the lowest error rate. As a result, a model that can process the compression test data to predict flow curves at intermediate temperature or strain rate values was developed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3