Optimization of Dry-Sliding Wear Parameters on Lanthanum Hexa Aluminate Reinforced Magnesium AZ91E Composites Using Grey Relation Analysis

Author:

Ynv Sai Ram1,Tara Sasanka C.2,Prabakaran J.1

Affiliation:

1. Annamalai University

2. RVR & JC College of Engineering, India

Abstract

This work confers to the preparation of Magnesium metal matrix composites reinforced with Lanthanum Hexa-aluminate nanoparticles by a stir casting technique and the tribological characteristics of the composites in dry condition were investigated. A Comparison is also made with AZ91E magnesium alloy and the prepared composites for the assessment of wear behavior. A design of experiments based on the Taguchi technique is used to collect data in a controlled manner. A L25 orthogonal array is used to investigate the effect of wear parameters such as Percentage of Reinforcement, Sliding Speed, Applied Load, and Sliding Distance on dry sliding wear of composites. The aim of the model was to investigate dry sliding wear with "smaller is better" characteristics. The results showed that sliding distance has the largest effect on wear, while the load is the most important factor in friction response. In GRA analysis, the combined effect of wear and frictional force is considered and the optimum combination is identified (S5 L1 D1 R4). The percent of the contribution of load, L (60.97 %) was known to be the most important factor influencing performance to wear. The % reinforcement, R (31.17%) was found to be the 2nd most influencing factor, followed by sliding distance, D (4.81%), and sliding velocity S (0.25%). The worn surfaces of fabricated composites in the best and worst conditions were examined using scanning electron microscopy for understanding the wear mechanism.

Publisher

Trans Tech Publications, Ltd.

Subject

General Chemical Engineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3