Application of System-Based Solar Photovoltaic Microgrid for Residential Real Estate

Author:

Gedefaye Edemialem1,Lakeou Samuel2,Tadiwose Tassew3,Terefe Tefera4

Affiliation:

1. Bahir Dar University

2. University of the District of Columbia

3. Bahir Dar Institute of Technology, Bahir Dar University

4. Adama Science and Technology University

Abstract

This research explores the techno-economic potential for a predominantly renewable electricity-based microgrid serving Ethiopian residential real estate buildings, the fastest-growing sector. A stand-alone photovoltaic (PV)-Battery energy storage system (BESS)-Genset (PV-BESS-Genset) connected microgrid model, utilizing measured solar irradiation data, real-time manufacturer data for technology components, case study area daily energy consumption data, and a bottom-up approach to model demand response. The modeled system results in a $ 0.298 cost of energy (COE), reduces the 2000.34 kg/yr amount of CO2 released into the environment, and yields 1,470 kWh/yr of excess energy, which indicates that the system is the most cost-effective, ecologically friendly, and reliable, respectively. Moreover, solar PV production potential is very high onsite and can meet the onsite demand with a renewable fraction of 99.3%. However, BESS and generator production potential is substantial and provides a more balanced supply that can supply electricity when solar PV production is insufficient. These results can help to develop rules for residential real estate villages to generate their own electricity needs, distribute residential real estate's current grid energy share to other underserved areas, and lessen the issue of power outages. In an original test case, HOMER software was used to build a microgrid system based on renewable energy (RE), with the single objective of minimizing the net present cost (NPC), and MATLAB/Simulink for energy management. Thus, the system could be a benchmark for new roof-mounted solar-based technology for residential real estate buildings in Ethiopia.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3