Mechanical, Thermal Properties of Virgin, Recycled and Mixed High-Density Polyethylene Matrices and Wood Plastic Composites with Plywood Sanding Dust

Author:

Kajaks Janis1,Kalnins Karlis1,Zalitis Martins1,Matvejs Juris2

Affiliation:

1. Riga Technical University

2. JSC

Abstract

Virgin high-density polyethylene (vHDPE), recycled (rHDPE), and mixed vHDPE/rHDPE matrices and wood plastic composites based on these mixtures + 50 wt.% of plywood sanding dust (PSD) and 3 wt.% coupling agent maleated polyethylene (MAPE) physical-mechanical properties (tensile, flexural strength and modulus, impact strength, and microhardness) were investigated. It was observed that all defined properties depend on the content of rHDPE in the pure polymer matrix and corresponding WPCs. Tensile strength and modulus decreased a bit, but flexural modulus actually had no changes. At the same time, a decrease in impact strength and a significant increase (up to 2 times) in microhardness are observed. From all the investigated matrices, the most perspective seems to be the matrix with a vHDPE/rHDPE ratio of 75/25, whose mechanical properties are acceptable for the preparation of the WPCs based on plywood sanding dust. The compatibilization possibilities tests of different mixed matrices done by the DSC method in the air showed that the mixed vHDPE/rHDPE compositions compatibility is sufficiently good at different proportions. For all mixed matrices, only one relatively symmetric band with one peak of melting was observed. Differential scanning calorimetry (DSC) tests in an inert environment showed that during the first heating cycle, HDPE components are only partially compatible (two peaks of melting temperatures are possible to fix). On the contrary, after the cooling and crystallization processes, during the second heating of the same sample, these two bands completely merge, and like in the air, only one maximum melting temperature peak was observed. The values of thermal oxidation temperature and melting temperature are the highest for virgin vHDPE but the lowest for rHDPE. The values of all corresponding parameters of mixed matrices reduce proportionally with an increase in rHDPE content in the mixtures.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3