Investigation of Strength Concrete Materials Using Pozzolanic Additives

Author:

Yusra Andi1,Hasan Muttaqin2,Aulia Teuku Budi2,Fachruddin Fachruddin1

Affiliation:

1. Teuku Umar University

2. Syiah Kuala University

Abstract

In the study, pozzolanic materials serve as replacements for additives, namely Palm Shell Ash (PSA), Coal Fly Ash (CFA), and Rice Husk Ash (RHA). The purpose of the study is to determine the optimum proportion of additives used in high-performance concrete. The addition of 15% PSA resulted in a strength of 69.227 MPa over a test period of 56 days, while the addition of 15% CFA yielded a strength of 69.369 MPa, and the addition of 5% RHA resulted in a strength of 59.984 MPa. The maximum concrete strength is achieved by adding 15% PSA. Correlation analysis between stress-strain indicates that aggregates exhibit higher strength compared to cement paste, mortar, and concrete, highlighting the relationship between the aggregate, cement paste, mortar components, and concrete as a composite material. Aggregate strength values found to be the highest among concrete, cement paste, and mortar, indicating that cement paste contributes the least to the strength of concrete, followed by mortar as concrete reinforcement. The results suggest that aggregates remain the primary strength component supporting concrete. The finding indicates that the relationship between the basic substances in this study aligns closely with existing theory. Moreover, it suggests that all concrete materials with pozzolan variants can classified as high-quality concrete. The optimum percentage is obtained by adding 15% palm shell ash, resulting in the highest compressive strength compared to counterparts and test objects with other types of pozzolan additions. The relationships between the constituents of concrete demonstrate that aggregates continue to be important contributors to concrete strength, with the cement paste contributing the least. Concrete strength values fall between those of aggregates and those of cement and mortar pastes.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3