Synthesis, Characterization, and Wear Behavior of W-DLC Films Deposited on Si Substrates

Author:

Karslioglu Ramazan1,Meletis Efstathios I.2

Affiliation:

1. Ankara Yildirim Beyazit University, Faculty of Architecture & fine Arts

2. University of Texas

Abstract

Tungsten (W) reinforced diamond-like carbon (DLC) nanocomposite thin films were deposited on silicon substrates by magnetron sputtering in a CH4/Ar discharge. The W content of the films was varied by varying the W target power (20, 40, 60, 80, and 100 W). The evolution of the W-DLC nanocomposites was studied by high-resolution transmission electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, 3D optical profilometry and Raman spectroscopy. Increasing the W target power resulted in an almost liner increase in the W content, reduced the hardness and the sp3/sp2 ratio in the films, while it increased the surface roughness and promoted formation of WC nanoparticles. Tribological properties were studied by conducting sliding reciprocating testing. Wear tracks were analyzed with Raman spectroscopy and 3D optical profilometry. Increasing the W content in the films (increasing target power) resulted in a reduction of both, the friction coefficient and wear rate. The film deposited at 80 W target power (~8 at. % W) exhibited the lowest friction coefficient (0.15) and wear rate (6x10-7 mm3N-1m-1). The observed low friction and wear rate were attributed to the particular nanocomposite structure of the films involving a fine distribution of WC nanoparticles surrounded by a sp2 dominant carbon network. The present W-DLC nanocomposite films offer a highly desirable combination of low friction and low wear rate.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3