Computational Evaluation of Weaving Process on Mechanical Stiffness of Plain Weave Fabric

Author:

Zhang Yue1,Miyaki Hikaru1,Zhang Jianliang1,Sakuma Atsushi1

Affiliation:

1. Kyoto Institute of Technology

Abstract

Inherent structural stress in a plain weave is induced during the formation process of fabrics, and its evaluation is useful for estimating the mechanical stiffness of weaves. In this study, the effect of inherent stress distributed in a weave fabric was investigated to estimate its mechanical stiffness. Here, a numerical simulation method that imitates the fabrication process of fabrics is proposed to evaluate stiffness. A diagram illustrating the weaving process is defined in this evaluation method. For computational analysis, a unit cell model used in homogenization was developed based on the structural periodicity of the plain weave structure using the finite element method. The weaving state was accomplished by simulating the weaving behavior in this model. The weaving state included the geometric shape and stress/strain data. Subsequently, a model was built to estimate the mechanical stiffness based on the weaving state data. Finally, a uniaxial tensile simulation was conducted using the numerical model. Using this evaluation method, the effect of inherent stress on the mechanical stiffness of weaves was quantified, which indicated that the tensile stiffness improved in a small strain range. The effect gradually decreased as the tension progressed.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3