Thermal Design Approach of a Shell and Tube Heat Exchanger for Pyrolysis-Vapor Condensations

Author:

Simanjuntak Janter Pangaduan1,Tambunan Bisrul Hapis1,Sihombing Junifa Layla1,Riduwan Riduwan2

Affiliation:

1. Universitas Negeri Medan

2. UKM Arang Binaan PKBL PT

Abstract

This study aimed to design a condenser for a special application of condensing the vapor of pyrolysis process of hydrocarbon-based material such as plastic and biomass into liquid form or pyrolytic oil. Numerous condensers have been available in the market. However, a condenser cannot be selected and utilized directly for pyrolysis vapor condensation purposes. Before doing selection, the condenser must be designed first to meet the heat transfer requirements. In this work, the condenser was designed based on thermal analysis and validated with numerous published experimental data and the pyrolytic characteristics from related industry. A theoretical model is formulated for describing condensation of the pyrolysis vapor in the condenser to determine heat transfer requirement and the rate of condensation obtained. The effect of operating parameters such as cooling water rate in liters per minute (LPM) and temperature on the condensation rate was examined through an iterative procedure which rely to the heat transfer rate and the allowed pressure drop in the condenser. In this study, it was obtained that the highest cooling load is obtained when the flow rate of cooling water is 1.95 LPM. It was also obtained that the condenser effectiveness decreased of about 29.3 % with the ranges of cooling flow rate from 1.3 to 2.6 LPM

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3