Comparative Analysis and Performance Characteristics of Bio-Additives Induced Fuel Blend

Author:

Biodun Biola Mathew1,Fayomi Ojo Sunday Isaac2,Okeniyi O. Joshua1

Affiliation:

1. Covenant University

2. Bells University of Technology

Abstract

Global demand for efficient transportation and energy dissipation in industries that use engine-powered equipment is enormous and largely supplied by liquid fuels derived from petroleum that power internal combustion engines (ICEs). Since the demand for jet fuel and diesel is anticipated to surpass gasoline consumption in the near future, low-octane gasoline components will become more widely available. As a result, low-octane gasoline components are expected to become more readily available, as demand for jet fuel and diesel is expected to outpace gasoline consumption in the near future. Experimentally, the effects of organic fuel additives (OFAs) on the performance of internal combustion engines were investigated. The findings compare plain, commercially available, neat gasoline samples to pure ethanol and fuel samples injected with OFAs. The development of various fuel blends; the analysis and characterization of fuel samples, including blended fuel samples; and the experimental investigation and comparative analysis of the engine performance powered by the various samples and blends of gasoline on the TQ TD115 MK11 testbed for single-cylinder engines were carried out in the study. The study demonstrated that the nanoadditions were superior to pure ethanol and undiluted gasoline in terms of performance. and showed that pure ethanol has a high torque value at lower speeds, but at speeds greater than 3000 rpm, D-NA outperformed ethanol additives and neat gasoline in terms of torque. At lower speeds, pure ethanol also had a high brake power value, but as speeds increased, samples containing D-NA outperformed ethanol additive and neat gasoline in brake power. Pure ethanol in a concentration of more than 3 has a high brake thermal efficiency value at lower speeds, but as speeds increased, samples containing D-NA outperformed ethanol additive and neat gasoline in terms of brake thermal efficiency. Keywords: Fuel additives; ethanol; brake power; Internal combustion engine; fuel

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oil Exploitation in the Niger Delta: A Case Study of Environmental Costs and Responsibilities;European Journal of Theoretical and Applied Sciences;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3