Exploring Microgravity Liquid Printing Based on Resin Solidification for Outer Space Applications

Author:

Diaz Palacios Fabio1,Sahonero Alvarez Guillermo1,Rojas Gabriel1,Clavijo Miguel1,Ordoñez Jhon1,Nallar Khalil2

Affiliation:

1. Universidad Catolica Boliviana

2. Print3D

Abstract

Space traveling, extra-planetary exploration and even colonization requires to replicate our capabilities of manufacturing under non-entirely known environments and conditions. With the recent, yet always present, interest on colonizing spaces like the Moon or even Mars, space-based Additive Manufacturing (AM) has been considered for enabling space inhabitants to build their own tools. However, the same manufacturing techniques that are commonly used on Earth are not entirely applicable in space, especially during the considerably long traveling stage. Thus, several works have reported the study of how AM could be used in microgravity or near-zero g conditions by using the International Space Station as a laboratory. Unfortunately, the costs for doing such experiments are prohibitive, which is why experimentation in microgravity conditions on Earth is promising. In this paper, we explore the possibility of applying light-sensitive resin under Microgravity conditions using a Drop Tower facility and we propose a microgravity liquid printing technique. Our preliminary experiments focused on studying movement and extrusion velocities, extrusion nozzle diameter, UV light power, extrusion, and solidification times. The experimental runs (one catapult launch and four drops) let us find promising, although not entirely conclusive, data and practices to be considered in future works using this methodology. As expected, there is a similarity to liquid extrusion on Earth given that the initial shape and speed of extrusion influences the liquid material. Our findings also suggest that an initial contact point would help to increase the contact force due to surface tension and that the extrusion and solidification times are less than 5 seconds, which implies faster printing processes than in earth gravity conditions because the microgravity provides us less layer mixing during extrusion. The hardware, material and Microgravity drop tests used confirm the feasibility of this technique and they become an initial step for this printing process and liquid materials.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3