Modeling and Optimization of Turning Hastelloy C-276 under Sustainable Machining Environments

Author:

Singh Balkar1,Singh Sehijpal2,Aggarwal Vivek1,Singh Gurpreet1ORCID

Affiliation:

1. I.K Gujral Punjab Technical University

2. Guru Nanak Dev Engineering College

Abstract

Due to their numerous applications in the aerospace, chemical, and nuclear power industries, environmentally responsible superalloy machining is a major problem in the current production environment. Additionally, Ni-based superalloys are regarded as difficult to manufacture because of their great strength under hot and chemically reactive settings. Therefore, it is necessary to machine these materials using adequate cooling and lubricating solutions. Current study has been based on the optimisation and modelling of turning Hastelloy C-276 under dry, flood, and least lubrication system. A Taguchi L-9 arrangement was used as plan of experiment and modeling was enabled through ANOVA, regression analysis and Taguchi optimization. The results depicted optimal parameters for surface roughness and temperature at v2-f1-d1-CE3 and v1-f2-d1-CE3. Likewise, for CRC and shear angle the best combination was observed at v3-f3-d2-CE2. From ANOVA analysis, the benefaction of C.E, depth of cut and feed rate on S.R been listed as 46.70%, 40.44% and 10.66%. Likewise, for temperature cutting speed has benefaction of (53.09%), cooling environment (23.94%), depth of cut (6.10%) and feed rate 5.49% . In similar fashion, CRC and Shear angle were influenced by feed rate and cutting speed having contribution of 62.89% and 5.15% respectively. Furthermore, minimum standard error between the fitted and observed values for S.R., temperature, CRC, and shear angle were calculated as 0.0149, 7.66, 0.267, and 1.80 units. Finally, the marginal reduction of cutting temperature and surface roughness through utilization of MQL implies the sustainable machining conditions.

Publisher

Trans Tech Publications, Ltd.

Reference28 articles.

1. Titanium in Automotive Production;Schauerte;Advanced Engineering Materials,2003

2. D. A. Stephenson and J. S. Agapiou, Metal cutting theory and practice. CRC press, 2016.

3. Applicability of DLC and WC/C low friction coatings on Al2O3/TiCN mixed ceramic cutting tools for dry machining of hardened 52100 steel;Sateesh Kumar;Ceramics International

4. Investigations on chip formation of turned novel AM alloy;Dutta;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,2020

5. Saw-tooth chip formation and its effect on cutting force fluctuation in turning of Inconel 718;Zhang;International Journal of Precision Engineering and Manufacturing,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3