Silver Nanowires (AgNWs) Post-Treatment Effect in Application of Flexible Transparent and Conductive Electrodes: A Mini Review

Author:

Nasikhudin Nasikhudin1,Al Fath Yusril1,Istiqomah Istiqomah1,Rahmadani Hari1,Diantoro Markus1ORCID,Pujiarti Herlin1

Affiliation:

1. State University of Malang

Abstract

Transparent flexible electrodes (TFEs) are extremely crucial for expanding flexible and wearable electronic devices. Silver nanowires (AgNWs) have been extensively investigated as an alternative to replace Indium Tin Oxide (ITO) as a commercial TFE due to their high conductivity, transparency, and flexibility. AgNWs have replaced ITO-based electrodes as the preferred approach in flexible, transparent, and conductive electrodes (FTCE). AgNWs outperform other materials, such as Reduced Graphene Oxide (RGO), ceramic material, Carbon Nanotubes (CNT), and conductive polymers, in terms of electrical conductivity, transmittance, flexibility, and low sheet resistance. Numerous techniques, including as electrospinning, spray coating, spin coating, and doctor blades, are used to use AgNWs as flexible substrates. Seed-based growth and template-assisted synthesis are two fundamental synthesis techniques that could be used to generate AgNWs. However, poor adhesiveness, and thermal and electrical stability, begin to be bottlenecks for AgNWs as high deployment in a variety of devices. So AgNWs synthesis process began to shift to other methods, such as wet chemical and polyol. In this paper, short and clear summary of various advances including post-treatment methods such as UV radiation, microwave, sonication, quenching, and so on is conducted to be one step forward to test mechanical properties and to improve AgNWs performance.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3