Numerical Simulation and Experimental Study of Natural Convection Flow in a Test Bench for Solar Air Heaters

Author:

Bakri Badis1,Benguesmia Hani2,Ketata Ahmed3,Diriss Slah3,Driss Zied3

Affiliation:

1. M’sila University

2. University of M’sila

3. University of Sfax

Abstract

This paper is intended to check the thermal convection flow during a new solar air heater (SAH) test bench, which is conducted in the LASEM laboratory. In fact, the applied system includes two-passage heater solar air separated by an absorber. On the other hand, a glass piece is connected to the box prototype via a pipe. Then, the piece of the glass is attached to the front side of this device in which an absorber is inserted. Moreover, two circular holes are made on the same face of the box prototype. The first is an entry hole through which hot air goes inside, and an exit hole through which air is released into the surrounding area. The study was conducted using the Navier-Stokes equations associated with the k–ω turbulence model through the use of the newly released Ansys 17.0 software to characterize the aero-thermal structure of our new system operating in natural convection. In these conditions, it has been observed that the hot zone created on the mirror side receiving the solar radiation generates an ascendant movement. It goes from the bottom to the top and enters the box prototype. The same phenomenon is also created in the box where the airflow coming from the solar heat escapes into the environment. This movement created between the hot zone of the solar heat and the box prototype is also imposed in the cold zone of the solar heat on the heat-insulating side. In these conditions, the air movement is however from the top to the bottom. Indeed, the acceleration of the air velocity at the inlet of the solar heat is due to the change of the section which is more reduced by comparison to the rest of the air circulation duct. Based on our experimental results generated in a two-passage solar air heater connected to the box prototype, the computational approach and the simulation results were validated. By referring to the classic solar air heater with one passage, the energy efficiency measured in the same conditions was enhanced and presented the efficient one with an improvement of about 27%. Finally, the numerical results are compared to our experimental results and those obtained by the authors. The comparison proved a good agreement.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3