Hollow Cobalt Carbide Cubes / Reduced Graphene Oxide Nanocomposite via Cyanide Coordination Polymer for Supercapacitor Applications

Author:

Aboelazm Eslam Atef Abdelaziz1ORCID,Khe Cheng Seong1,Shukur Muhammad Fadhlullah Abd1,Saheed Mohamed Shuaib Mohamed1,Ali Gomaa Abdelgawad Mohammed2,Chong Kwok Feng3

Affiliation:

1. Universiti Teknologi PETRONAS

2. Al-Azhar University

3. Universiti Malaysia Pahang

Abstract

Coordination polymers, a broad class of porous hybrid materials resulting from the connection of metal ions with organic ligands, showcase enduring porosity, well-organised crystalline structures, and open metal active sites that augment their metal ions' redox activity. This investigation focuses on examining a nanocomposite composed of cobalt carbide/reduced graphene oxide (Co3C/rGO) prepared through the copolymer method, serving as an electrode material for supercapacitor devices. The nanocomposite's structure and hollow cubic morphology were confirmed through X-ray diffraction, Raman spectroscopy, and field emission scanning electron microscopy (FESEM) analysis. Electrochemical properties were thoroughly assessed using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge in 6M KOH with a voltage window of 0 V to 0.5 V. The Co3C/rGO electrode exhibited notable electrochemical performance, displaying a specific capacitance of 486.6 F g-1 at 1 mV s-1 and a low internal resistance of 0.58 Ω, surpassing existing literature due to its porous morphology. Additionally, to evaluate the nanocomposite's cycling stability, 5000 charge/discharge cycles were conducted, revealing a capacitive retention of 82% of its original capacitance after 5000 cycles. This underscores its excellent long-term durability as a high-performance material for supercapacitor applications.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3