Affiliation:
1. Institute für Mikro- und Nanoelektronik and Institut für Mikro- und Nanotechnologien MacroNano
2. Ioffe Institute
3. TU Ilmenau
Abstract
Hysteresis response of epitaxially grown graphene nanoribbons devices on semi-insulating 4H-SiC in the armchair and zigzag directions is evaluated and studied. The influence of the orientation of fabrication and dimensions of graphene nanoribbons on the hysteresis effect reveals the metallic and semiconducting nature graphene nanoribbons. The hysteresis response of armchair based graphene nanoribbon side gate and top gated devices implies the influence of gate field electric strength and the contribution of surface traps, adsorbents, and initial defects on graphene as the primary sources of hysteresis. Additionally, passivation with AlOx and top gate modulation decreased the hysteresis and improved the current-voltage characteristics.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献