Prediction of Flexural Properties of Additively Manufactured Short Fiber-Reinforced Polymer Composite Parts

Author:

Kariuki Lucy W.1ORCID,Ikua Bernard W.1,Karanja Samuel K.1,Ng'ang'a Stephen P.1

Affiliation:

1. Jomo Kenyatta University of Agriculture and Technology

Abstract

Fibre-reinforced polymer (FRP) composites have many desirable properties such as high corrosion resistance and a high strength-to-weight ratio. They can also be easily optimised to suit different loading requirements. To produce functional components through 3D printing using FRPs, it is important to optimize the printing process parameters and to predict the mechanical properties of the printed components. The mathematical predictive approach is preferred over experiments it is flexible, fast and not as costly as experiments. In this work, a coupled finite element model for predicting flexural strength properties of additively manufactured parts is developed. The model takes into account the structure, material microstructure, and fused filament fabrication (FFF) process parameters in predicting the flexural strength of parts. The validity of the model is tested using a standard flexural bending specimen and an ankle-foot orthosis (AFO) prototype which are fabricated using short carbon fibre-reinforced polyamide 12 (PA12-CF) filament. The validity of the coupled analysis model was tested by comparing the model predictions of flexural strength with experimental results. The results provide a good prediction of part performance.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3