Optimization of Sandblasting to Improve the Surface Finish of 17-4PH Parts Manufactured by SLM Using Different Laser Scanning Strategies

Author:

Giganto Sara1,Martínez-Pellitero Susana1ORCID,Rodríguez-Mateos Pablo1,Soni Neetesh2,Barreiro García Joaquín1

Affiliation:

1. Universidad de León

2. University of Salento

Abstract

Great advances have emerged in recent years around additive manufacturing techniques, with an increasing number of different materials (polymers, ceramics, metals). However, metal part manufacturing has always been one of the most demanded in engineering. That is due to its ability to create final functional parts with good mechanical properties. One of the most widely used technique is Selective Laser Melting (SLM). The SLM process uses a laser power source to selectively melt metal powder layer by layer. Typically, this manufacturing technique requires mechanical post-processing operations, not only to split the parts from the build-plate, but also to improve the mechanical properties and surface finish of parts or the dimensional accuracy of specific regions to ensure assembly and interchangeability. In particular, sandblasting is a method of mechanical abrasion cleaning commonly used and very useful for improving the surface topology of SLM printed parts. Besides, the laser scanning strategy used in this additive manufacturing process influences the surface quality of parts. Therefore, in this work, the sandblasting post-process has been optimized for surface roughness improving in parts printed using the most common laser scanning strategies (normal, hexagonal, concentric). The role that sandblasting pressure and time plays in the surface quality of parts, indispensable to optimize this SLM post-process, has been evaluated. Thus, surface roughness of different specimens subjected to different sandblasting parameters has been measured to optimize both values related to the laser scanning strategy used in SLM manufacturing. The material used is 17-4PH stainless steel, an alloy that presents an excellent combination of high strength and good corrosion resistance, high hardness, good thermal properties, as well as excellent mechanical properties at high temperatures. This precipitation-hardened steel has important applications in the aerospace sector, chemical and petrochemical industry, energy sector, surgical instruments, high wear components, and general metallurgy, among others.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3