Modelling Thermoplastic Filaments’ Sintering by Level Set Method

Author:

Chaunier Laurent1ORCID,Belhabib Sofiane2,Guessasma Sofiane1,Reguerre Anne-Laure1,Leroy Eric3

Affiliation:

1. INRAE

2. Université de Nantes

3. Université de Nantes, Oniris, CNRS, GEPEA, UMR 6144, St-Nazaire

Abstract

The viscous sintering kinetics of thermoplastic polymers is generally studied by monitoring the evolution of the bonding neck between two particles (spherical, or cylindrical) and using a refined Frenkel-Eshelby’s model. Recently, we showed that the entire contour of sintering filaments could be modelled by lemniscates as figure-eight shape curves to assess bonding abilities of a 3D-printable plasticized biopolymer. Using COMSOL Multiphysics® software, we set up a 2D finite element model of thermoplastic filaments’ viscous sintering with flow front tracking by the level set method. This leads to contrasted images of the two phases, i.e. air and polymer, allowing the prediction of the shape of the interface corresponding to the filaments’ contour. An image analysis procedure is applied to the simulated sequences and the ones acquired during sintering trials of extruded filaments based on zein, a corn protein plasticized by 20w% glycerol. This method is based on the assessment of the coordinates of sintered filaments’ edge pixels and their fitting by lemniscates of Booth. We show that the 2D FEM approach combined with level set method allows simulating the hot melt viscous sintering of a 3D-printable thermoplastic biopolymer as a two-phase flow. Furthermore, the image analysis is successfully applied to simulated and experimental sequences, thanks to the monitoring of the filaments’ contour, to assess their bonding kinetics and check its modelling.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3