Low-Power Operating Aluminum Nitride Nanowire-Film Ultraviolet Photodetector

Author:

Teker Kasif1ORCID

Affiliation:

1. Marmara University

Abstract

This work presents the fabrication and testing of a cost-effective, low power consuming, high sensitivity aluminum nitride nanowire-film-based ultraviolet photodetector. Time-dependent dynamics of photocurrent rise and decay have been investigated with varying applied bias ranging from 1 V to 20 V by periodical exposures to 254 nm ultraviolet light. The device shows stable and repeatable photocurrent cycles at low bias voltage of 1V indicating the sensitivity and low power operating capability. Furthermore, the photocurrent increases as the bias voltage increases such that the photocurrent at 20 V is approximately seventeen times larger than that of at 1 V. Despite the relatively long device length, the device reveals a quick response with a rise time of 270 ms. Moreover, the responsivity of the photodetector has been determined as 3.78 mA/W and 0.201 mA/W at 20 V and 1 V, respectively. This study demonstrates the potential of aluminum nitride nanowires for applications in next generation, low power consumption nanoscale optoelectronic devices in advanced communication, flame detection, air purification, ozone sensing, leak detection and other space monitoring.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3