Plasma Immersion Ion Implantation of a Fe-Mn-C Based Steel for Biomedical Applications: Effect of Gases and Treatment Times on the Surface Properties

Author:

Marin de Andrade Leticia1,Chevallier Pascale1,Paternoster Carlo1,Copes Francesco1,Mantovani Diego1

Affiliation:

1. Laval University & University Hospital Research Center

Abstract

Current research on biodegradable iron-based alloys mainly focuses at regulating the material degradation rate, as well as its biological behavior, especially from the point of view of the hemocompatibility and cytocompatibility. In fact, fine-tuning of the surface roughness, morphology and chemical composition can improve the functional response of the material. For that purpose, a surface modification strategy, namely plasma immersion ion implantation (PIII), is proposed to perform the selective modification of surface properties without affecting the bulk ones. In this work, the influence of treatment time (timp = 15, 60 and 120 min.) and implanted species (O, N or C) on the surface properties of a Fe-13Mn-1.2C resorbable alloy was investigated. The findings demonstrated that varying the process gas and the exposition time led to a variety of topographies, surface energies and chemical compositions. XPS analyses and depth profiles clearly showed the impact of the process parameters on the surface features and element distribution, due to implanted species penetration into the alloy. The implanted samples showed a delayed clotting time, thus a better hemocompatibility. In contrast, nitrogen-treated surfaces displayed a more pronounced hemolytic behavior, whereas oxygen and methane did not. PIII implantation appears to be a versatile solution for fine-tuning surface topography, composition and biological properties, making the process promising for the improvement of metallic biodegradable vascular implants.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3