Performance Evaluation of Ultra High Performance Concrete Manufactured with Recycled Steel Fiber

Author:

Elrefaei Ali E.1,Alsaadawi Mostafa2,Elshafiey Mohamed M.1,Abdolwahab Mohamed1,Oan Ahmed Faisal1

Affiliation:

1. Egyptian Russian University

2. Horus University

Abstract

This study investigated the rheological properties and impact resistance of ultra-high-performance concrete (UHPC) enhanced by using waste steel fibre (WSF) extracted from waste tires. The experimental program involved testing five different percentages of WSF to fortified UHPC, which were produced to illustrate how WSF affected the rheological properties of UHPC. The five different percentages of WSF were of 0.3 %, 0.45%, 0.6%, 1.05% and 1.35% by volume of concrete. Both hardened and fresh properties, such as unit weight, compressive strength, slump, flexural strengths, indirect tensile strength (IDT), and impact resistance of UHPC were analyzed, and the results showed that Compressive strength, IDT, and Flexural increased by 49 %, 79 %, and 40 % for mixtures containing 1.35 % waste steel fibre, respectively. The UHPC mixes also showed significant higher impact resistance compared with conventional mix.

Publisher

Trans Tech Publications Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3