Affiliation:
1. KLE Technological University’s Dr. M. S. Sheshgiri College of Engineering and Technology
2. Angadi Institute of Technology and Management (AITM)
3. M.S. Ramaiah University of Applied Sciences
Abstract
In the present research work, carbon nanosphere (5 wt. %, 10 wt. % and 15 wt. %)/Zr- based metal organic frame works (CNS: Zr (II)-MOFs) with different molar ratios of the legend 4-{[(1E)-1-Hydroxy-3-Oxoprop-1-En-2-yl] Sulfanyl} Benzoic Acid (HOSBA) have been successfully synthesized by hydrothermal method. Studies using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) have validated certain structural, optical, and morphological features. The supercapacitance performance of the synthesized MOFs was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). At a current density of 0.5 A g-1and at a scan rate of 10 mV/s, the 15% CNS doped Zr-MOF demonstrated highest specific capacitance (Cs) of 239.4 F g-1. 15 wt.% CNS doped Zr-MOF proven power density of 2100 W kg-1and maximum energy density of 14.82 Wh Kg-1with capacitive retention of 77.63 % following 2000 cycles mark this combination a good for supercapacitors (SCs) material. Regardless of the synthetic conditions, we achieved MOFs which exhibited hetero structure formation with spherical morphologies. The results open us new and energy approach for the supercapacitor of the Zr-metal based MOFs and applications in the photonics, optoelectronics, and promising electrode material for electrochemical energy storage systems.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献