Electrochemical High-Performance Hybrid Supercapacitors of Carbon Nanosphere Doped 3D Zr (II) Linked 4-{[(1E)-1-Hydroxy-3-Oxoprop-1-En-2-Yl]Sulfanyl}Benzoic Acid Metal Organic Frameworks

Author:

Nandi Santosh S.1ORCID,Adimule Vinayak2,Kerur Shankramma S.1ORCID,Gupta Abhinay1,Hosmane Sateesh1,Batakurki Sheetal3

Affiliation:

1. KLE Technological University’s Dr. M. S. Sheshgiri College of Engineering and Technology

2. Angadi Institute of Technology and Management (AITM)

3. M.S. Ramaiah University of Applied Sciences

Abstract

In the present research work, carbon nanosphere (5 wt. %, 10 wt. % and 15 wt. %)/Zr- based metal organic frame works (CNS: Zr (II)-MOFs) with different molar ratios of the legend 4-{[(1E)-1-Hydroxy-3-Oxoprop-1-En-2-yl] Sulfanyl} Benzoic Acid (HOSBA) have been successfully synthesized by hydrothermal method. Studies using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) have validated certain structural, optical, and morphological features. The supercapacitance performance of the synthesized MOFs was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). At a current density of 0.5 A g-1and at a scan rate of 10 mV/s, the 15% CNS doped Zr-MOF demonstrated highest specific capacitance (Cs) of 239.4 F g-1. 15 wt.% CNS doped Zr-MOF proven power density of 2100 W kg-1and maximum energy density of 14.82 Wh Kg-1with capacitive retention of 77.63 % following 2000 cycles mark this combination a good for supercapacitors (SCs) material. Regardless of the synthetic conditions, we achieved MOFs which exhibited hetero structure formation with spherical morphologies. The results open us new and energy approach for the supercapacitor of the Zr-metal based MOFs and applications in the photonics, optoelectronics, and promising electrode material for electrochemical energy storage systems.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3