Classification of Retinal Images Using Self-Created Penta-Convolutional Neural Network

Author:

Narain Ramaswamy S.1,Siddhant R.1,Barath Vimanthann S.1,Anubhaps Pearline S.1,Muthurasu N.1

Affiliation:

1. SRM Institute of Science and Technology

Abstract

The primary way to classify retinal illnesses is to conduct several medical examinations, the most important of which is a visual examination. Human error is common as a result of a poor-higher cognitive process, which is one of the major challenges in visual disease diagnosis. Automated image processing technologies are more useful for early disease diagnosis and evaluation than the digitized diagnostic imaging conventional operations are confusing and time-consuming. The aim of this paper is to create a system that detects retinal abnormalities based on images using Deep learning technique. The images are first pre-processed. The photographs are enhanced after they have been pre-processed. The images that have been pre-processed are fed into the Penta-Convolutional Neural Network (Penta-CNN). Penta-CNN is a five-layered architecture that includes two convolutions, max pooling, and three fully connected layers. The performance of Penta-CNN is evaluated using STARE(Structured Analysis of the Retina) database [14]. The model is also trained with several hyperparameters which are tweaked and assessed.

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3