Constructal Theory Applied to the Growth of Injection Channels in a Liquid Resin Infusion Problem

Author:

Magalhães Glauciléia Maria Cardoso1,Chiomento Marcello Lovison2,Isoldi Liércio André1ORCID,Souza Jeferson Avila1,dos Santos Elizaldo Domingues3ORCID

Affiliation:

1. Universidade Federal do Rio Grande FURG

2. Universidade Federal do Rio Grande

3. Federal University of Rio Grande

Abstract

The present numerical study proposes the application of the constructal theory for the build of empty channels inserted in a porous domain, representing the liquid resin infusion process. Two different strategies are employed: 1) I-shaped pre-defined configuration for the empty channel, 2) constructive technique (evolutionary) where the empty channel is built from an elemental configuration and using the performance indicator to define the new position of each empty channel element. It is investigated the influence of geometry over the impregnation time and the amount of wasted mass of resin during the process. The same fluid dynamic conditions and the maximum occupation area of the empty channel were defined for the different strategies. The finite volume method (FVM) and volume of fluid (VOF) were used for the solution of mass, momentum, and transport of resin equations, which model the flow of resin/air mixture. Darcy’s law is applied to represent the porous medium resistance. Results showed that the constructive technique was highly promising in the proposition of configurations that reduced the time of impregnation of resin in the porous medium. Moreover, it was observed that, for the present fluid dynamic conditions, giving more freedom for the formation of empty channels shape also led to a reduction of filling time of resin impregnation in the porous mold.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3