Hybrid rGO-AgNPs Conductive Ink for Inkjet Printed Flexible Humidity Sensor

Author:

Rashid Nora'zah Abdul1,Ismail Nurul Hidayah1,Abd Aziz Aiman Sajidah1,Syed Mohd Jaafar Syed Muhammad Hafiz1,Sulaiman Suraya1,Lee Hing Wah1

Affiliation:

1. MEMS/NEMS-Micro Energy

Abstract

Due to the challenging dispersion of graphene in aqueous media, organic solvents are commonly used in conductive graphene inks. This will result in safety issues and environmental pollution. In this study, we demonstrated a green approach of graphene ink preparation through one-pot synthesis reaction that produce a hybrid reduced graphene oxide (rGO)-silver nanoparticles (AgNPs), with deionized water as solvent. The synthesized rGO-AgNPs was monitored using ultraviolet–visible (UV-Vis) spectroscopy and fourier transform infrared (FTIR). A stable dispersion of rGO-AgNPs ink was confirmed through UV-Vis analysis. FTIR result showed the removal and the reduction in the intensities of absorption bands of oxygen-containing functional groups, which indicated that graphene oxide (GO) has been successfully reduced to rGO in the hybrid ink. The printed film of rGO-AgNPs exhibited a high conductivity of 1.50 × 104 S/cm, proven that the electrical performance of the hybrid ink has been improved as compared to previously reported GO-based ink. Printed into interdigitated electrode (IDE), the impressive characteristic of our hybrid ink performed well as a high-sensitivity flexible humidity sensor.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3