Construction, Evaluation, and Performance of a Water Condensation Test Unit

Author:

Nanou Paraskevi1,Konstantaras John1ORCID,Zarkadoulas Athanasios2ORCID,Pandis Pavlos K.1ORCID,Vourdas Nikolaos1ORCID,Stathopoulos Vassilis N.1ORCID

Affiliation:

1. National and Kapodistrian University of Athens

2. University of Thessaly

Abstract

The study of water condensation phenomena is important in order to evaluate the performance of materials and coatings employed in the fabrication of waste heat recovery units including heat exchangers, heat pipes, condensing economizers and related functional surfaces. Fast evaluation of lab-scale samples is important during research and development of coatings for wetting phenomena under controlled, reproducible, and stable humidity and temperature conditions of both sample and environment. To study these effects, we report on the construction of a lab-scale condensation chamber, along with its evaluation and benchmarking with superhydrophobic coatings on stainless steel using perfluorooctyl silane (PFOTS). A working unit has been successfully fabricated and applied in a highly responsive device capable of recording the condensation performance of flat specimens under controlled conditions. Sample temperature was maintained with 0.10 °C deviation. The humidity response time of the chamber is 17.2 s per degree of RH% while the maximum relative humidity variation is +/- 3.2%RH. The unit successfully delivered valuable data over hydrophillic, hydrophobic and superhydrophobic surfaces. Data useful for studying open research issues such the relationship of contact angle and condensation phenomena.

Publisher

Trans Tech Publications Ltd

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3