Fabrication of Nanocomposite PDMS/Graphene as Flexible Substrate at Different Graphene Volume

Author:

Ghazali Irzati Zaili1,Awang Robi'atun Adayiah1,Herman Sukreen Hana1,Zulkifli Zurita1

Affiliation:

1. Universiti Teknologi MARA

Abstract

Conductive and flexible electronics have attracted great demands and attention in the field of stretchable and wearable electronic devices. In this work, polydimethylsiloxane (PDMS) was composited with different drops of graphene solution to produce flexible, conductive and optically transparent PDMS/Graphene composite using the drop-cast method. The dielectric constants of PDMS and PDMS/Graphene composite were measured using Agilent dielectric probe. I-V characterization was used to measure the conductivity of the flexible substrate in flat and bending conditions. The UV-VIS was used to measure the transmittance properties of the substrate. Comparing the electrical properties of the pristine PDMS substrate with graphene composited PDMS substrates, the current shows a slight decrease due to the physical morphology of PDMS/Graphene composite that creates a small hole on the surface. No significant changes can be found between 1 drop, 2 drops, 3 drops and 4 drops of graphene in PDMS solution. For the dielectric measurement, the result of composited PDMS/Graphene sample had shown a lower value of dielectric constant (1.1 F/m) compared to pure PDMS (2.33 F/m). This shows that the existence of graphene in PDMS reduces the dielectric constant of pristine PDMS. The result of UV-VIS shows the samples with 4 drops of graphene having the lowest visible transmittance. The PDMS/Graphene composite can be concluded as a dielectric material with a lower dielectric constant. It has the potential to be used as a conductive substrate for further flexible interconnect materials since it has a unique electrical feature and robust mechanical strength.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3