MD Simulation on Evolution of Micro Structure and Failure Mechanism around Interactional Voids in Pure Al

Author:

Yuan Yu Quan1,Chen Hua Yan1,Zeng Xiang Guo1,Hu Yan Fei2

Affiliation:

1. Sichuan University

2. Sichuan University of Science and Engineering

Abstract

Experiments have shown that initial voids may exist in the manufacturing processes of pure aluminum, which adversely affect its mechanical properties. In this study, the process of plastic deformation around voids in pure aluminum was examined at atomic scale through molecular dynamics (MD) simulation. The Modified Embedded Atom Method (MEAM) was employed to characterize the atomic interactions in the pure aluminum with two voids. The calculation results revealed that the interaction of two voids endures three phases when the interval of the voids is increased: void coalescence, void coactions followed by the formation of a stress shield zone, and interaction vanishing. The critical parameters of the interval for the three phases were defined as well in this work. It was observed that crack initiated and further propagated near the voids along the slip systems of FCC crystal, which eventually caused structural failure. Meanwhile, the evolution of micro structure in the crack propagation process was investigated by means of Common Neighbor Analysis (CNA). The results showed that the phase transformation occurred near the voids during loading process.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3