Thermal Stress Intensity Factors of Crack in Solid Oxide Fuel Cells

Author:

Anam Khairul1,Lin Chih Kuang1

Affiliation:

1. National Central University

Abstract

Structural durability is the main focus of solid oxide fuel cells (SOFCs) development which is affected by the thermal stress caused by considerable CTE mismatch between components and thermal gradient. In this paper we investigate the thermal stress intensity factor for mode I, mode II and mode III of positive electrode-electrolyte-negative electrode (PEN) at room temperature and steady stage for an initial crack size of 10 μm. A commercial finite element analysis (FEA) was used to find the highly stressed regions in PENs and calculate the thermal stress intensity factors. The stress distributions are calculated at uniform room temperature and at steady stage with a non-uniform temperature profile. The thermal stress intensity factors are calculated for various principal directions at the location having the greatest maximum principal stress at room temperature and steady stage. The critical stress regions are identified based on the maximum principal stress at room temperature and steady stage. The maximum principal stress is of 53.45 MPa and 45.12 MPa in principal direction of-43.97° and-42.37° at room temperature and steady stage, respectively. The mixed-mode stress intensity factor including mode I, mode II, and mode III is calculated due to multi-axial thermal stresses. However, the stress intensity factor for mode I have a highest value compared to those for modes II and III. The principal direction has an effect on the thermal stress intensity factor for the critical region with the greatest maximum principal stress. All the calculated stress intensity factors in the present study are less than the corresponding fracture toughness given in the literature, ensuring the structural integrity for the given planar SOFC stack.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3