Degradation Trend Estimation and Prognosis of Large Low Speed Slewing Bearing Lifetime

Author:

Kosasih Bu Yung1,Caesarendra Wahyu1,Tieu Kiet1,Widodo Achmad2,Moodie Craig A.S.1,Tieu A. Kiet1

Affiliation:

1. University of Wollongong

2. Diponegoro University

Abstract

In many applications, degradation of bearing conditions is usually monitored by changes in time-domain features. However, in low speed (< 10 rpm) slewing bearing, these changes are not easily detected because of the low energy and low frequency of the vibration. To overcome this problem, a combined low pass filter (LPF) and adaptive line enhancer (ALE) signal pre-conditioning method is used. Time-domain features such as root mean square (RMS), skewness and kurtosis are extracted from the output signal of the combined LPF and ALE method. The extracted features show accurate information about the incipient of fault as compared to extracted features from the original vibration signal. This information then triggers the prognostic algorithm to predict the remaining lifetime of the bearing. The algorithm used to determine the trend of the non-stationary data is auto-regressive integrated moving average (ARIMA).

Publisher

Trans Tech Publications, Ltd.

Reference8 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3