Faulty Insulator Diagnosis for UAV Videos Based on Repetitiveness Feature

Author:

Lin Lan1,Li Bing Feng1,Wang Ling2,Cong Yang1,Tang Yan Dong1

Affiliation:

1. Chinese Academy of Sciences

2. Liaoning Province Power Company

Abstract

In this paper, we proposed a faulty insulator diagnosis method for insulator faulty detection based on repetitiveness feature from UAV video sequence. The repetitiveness feature which describes the relationship of each structural element of insulator is employed for the insulator faulty diagnosis, and is robust to noise, camera motivation and complex backgrounds. Base on the repetition of structural element, our method can not only deal with single insulator with multi-faults, but also work on double insulator strings. The recognition results on insulator dataset and UAV video show the effectiveness of our method.

Publisher

Trans Tech Publications, Ltd.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3