Experimental Study of Drag Reduction on Circular Cylinder and Reduction of Pressure Drop in Narrow Channels by Using a Cylinder Disturbance Body

Author:

Widodo Wawan Aries1,Hidayat Nuzul1

Affiliation:

1. Institut Teknologi Sepuluh Nopember

Abstract

This paper present the results of drag reduction on circular cylinder and reduction of pressure drop in narrow rectangular channels by using circular disturbance body. This study focused on the phenomenon when the flow through the arrangement of the circular cylinder, separation will occur at a specific point on a circular cylinder resulting drag force. When the separation can be delayed so that the resulting drag force will be smaller. This can be done in various ways, one of which is by using a cylinder disturbance body on the upper and lower side near the bluff body. This study will be conducted in a wind tunnel experiments which have narrow channels with a square cross-sectional area of 125 mm x 125 mm and a blockage ratio of 26.4% and 36.4%. Specimens used circular cylinder with 25 mm diameter (d/D= 0.16) and 37.5 mm (d/D= 0.107) as well as the circular disturbance body with a diameter of 4 mm. cylinder disturbance body placed on the upper and lower side with the position α=200 to 600 and spacing (δ=0.4 mm) to the main circular cylinder. Reynolds number based on the hydraulic diameter of 5.21×104 to 15.6×104. The results of this research show the effect of using circular disturbance body on circular cylinder and the characteristics of fluid flow on a narrow channel square cross section. At a certain position of the circular disturbance body provide value pressure drop reduction on narrow channels and drag reduction when compared to a single circular cylinder. From the experimental data presented in this paper it is observed that the position angle of circular disturbance body to reduce drag force on a circular cylinder and reducing the pressure drop in the channel are at angle 200 and 300 for D=25 mm, and 200, 300 and 400, respectively, for D= 37.5 mm then the best reduction for both cylinders are at an angle of 300.

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3