Affiliation:
1. Université Paris 12
2. ICMPE-CNRS
3. Centre d'Etude de Chimie Métallurgique, CNRS-Université Paris XII
Abstract
Based on the Taylor theory, a critical length scale is defined as the minimum dislocations cell size obtained at the maximum work-hardening for metals and alloys. When grain size is smaller than this length scale, corresponding also to a critical dislocation mean free path, new behaviours occur; such as ductility and strength, near perfect elasto-plasticity, high strain-rate sensitivity. Bulk samples are fabricated from Cu nanopowders (particle size 50 nm) by powder metallurgy
techniques. The final grain size is comprised between the critical mean free path, evaluated at 130 nm and the size where transition to the so-called nano regime occurs (when unit dislocation no longer exists below 30 nm for Cu). Tensile tests are carried and microstructural analysis are performed before and after deformation.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献