Affiliation:
1. National Institute for Materials Science (NIMS)
Abstract
In order to understand carrier statistics in phosphorus-doped n-type diamond, electron statistics involving compensation and deep-dopant effect are theoretically analyzed. For n-diamond with a compensation ratio (c) larger than 1x10-4, the electron concentration (n) at room temperature (RT) is insensitive to the donor concentration (ND) and reduced with increasing the c value. On the other hand, for diamond with a c value smaller than 1x10-4, the n value at RT increases with increasing the ND value and is insensitive to the c value. Similarly, the length of Debye tailing (ln) at RT is reduced with increasing the c value for n-diamond with c>1x10-4 and is insensitive to the c value for n-diamond with c<1x10-4. However, it is found that an increase of temperature is effective to increase the n value and to reduce the ln value. The n value as large as 1015 cm-3 and the ln value as small as 100 nm are expected to be achieved at an elevated temperature of 473 K.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science