Effect of Thermomechanical Treatment on the Texture Evolution and Superplasticity of a Zn-0.3wt.% Al Alloy

Author:

Ha Tae Kwon1,Jeong Hyo Tae2,Chang Young Won3

Affiliation:

1. Gangneung-Wonju National University

2. Kangnung National University

3. Pohang University of Science and Technology

Abstract

Texture evolution and superplastic deformation behavior of a quasi-single phase Zn-0.3wt%Al have been investigated. It was attempted to produce a stable and fine-grained microstructure in a dilute Zn-Al alloy through a proper thermomechanical treatment process (TMTP). The grain size of about 1 µm was obtained in the Zn-0.3 wt.% Al alloy and a relatively coarse grain size of 10 µm was also obtained through a subsequent aging treatment. The fine-grained material showed typical rolling texture with basal poles tilted about 30 degrees away from the ND toward RD, while the coarse-grained material showed a typical recrystallization texture with basal poles parallel to ND. A series of load relaxation and tensile tests were conducted at room temperature. According to the internal variable theory of structural superplasticity, the grain boundary characters of fine and coarse-grained materials were different from each other. A large elongation of about 1400% was obtained in fine-grained material at room temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3